Enhanced effect and mechanism of water-in-oil microemulsion as an oral delivery system of hydroxysafflor yellow A
نویسندگان
چکیده
BACKGROUND A microemulsion is an effective formulation for improving the oral bioavailability of poorly soluble drugs. In this paper, a water-in-oil (w/o) microemulsion was investigated as a system for enhancing the oral bioavailability of Biopharmaceutic Classification System (BCS) III drugs. METHODS The microemulsion formulation was optimized using a pseudoternary phase diagram, comprising propylene glycol dicaprylocaprate (PG), Cremophor(®) RH40, and water (30/46/24 w/w). RESULTS The microemulsion increased the oral bioavailability of hydroxysafflor yellow A which was highly water-soluble but very poorly permeable. The relative bioavailability of hydroxysafflor yellow A microemulsion was about 1937% compared with a control solution in bile duct-nonligated rats. However, the microemulsion showed lower enhanced absorption ability in bile duct-ligated rats, and the relative bioavailability was only 181%. In vitro experiments were further employed to study the mechanism of the enhanced effect of the microemulsion. In vitro lipolysis showed that the microemulsion was digested very quickly by pancreatic lipase. About 60% of the microemulsion was digested within 1 hour. Furthermore, the particle size of the microemulsion after digestion was very small (53.3 nm) and the digested microemulsion had high physical stability. An everted gut sac model demonstrated that cumulative transport of the digested microemulsion was significantly higher than that of the diluted microemulsion. CONCLUSION These results suggested that digestion of the microemulsion by pancreatic lipase plays an important role in enhancing oral bioavailability of water-soluble drugs.
منابع مشابه
Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies
Hydroxysafflor yellow A (HSYA), the main active ingredient of the safflower plant (Carthamus tinctorius L.), is a hydrophilic drug with low oral bioavailability. Water-in-oil-in-water (w/o/w) double emulsions may enhance the oral absorption of HSYA. In this study, we prepared a self-double-emulsifying drug delivery system (SDEDDS) to improve the absorption of HSYA. SDEDDS consists of water in o...
متن کاملImprovement of effect of water-in-oil microemulsion as an oral delivery system for fexofenadine: in vitro and in vivo studies
Fexofenadine (FEX) has high solubility and low permeability (BCS, Class III). In this work, novel FEX loaded water in oil microemulsion (w/o) was designed to improve bioavailability and compared with Fexofen(®) syrup in in vitro and in vivo studies. In addition, pharmacokinetic parameters in permeability studies were estimated by using WinNonLin software program. w/o microemulsion system was op...
متن کاملPreparation and Evaluation of Aceclofenac Topical Microemulsion
A topical preparation containing aceclofenac was developed using an o/w microemulsion system. Isopropyl myristate was chosen as the oil phase as it showed a good solubilising capacity. Pseudo-ternary phase diagrams were used to obtain the concentration ranges of the oil, surfactant (Labrasol) and co-surfactant (plurol oleique) for microemulsion formation. Five different formulations were formul...
متن کاملFormulation and In-vitro Evaluation of Tretinoin Microemulsion as a Potential Carrier for Dermal Drug Delivery
In this study, tretinoin microemulsion has been formulated based on phase diagram studies by changing the amounts and proportions of inactive ingredients, such as surfactants, co-surfactants and oils. The effects of these variables have been determined on microemulsion formation, particle size of the dispersed phase and release profile of tretinoin from microemulsion through dialysis membrane. ...
متن کاملPreparation and Evaluation of Aceclofenac Topical Microemulsion
A topical preparation containing aceclofenac was developed using an o/w microemulsion system. Isopropyl myristate was chosen as the oil phase as it showed a good solubilising capacity. Pseudo-ternary phase diagrams were used to obtain the concentration ranges of the oil, surfactant (Labrasol) and co-surfactant (plurol oleique) for microemulsion formation. Five different formulations were formul...
متن کامل